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The vibration of a homogeneous circular membrane backed by two taut strings is shown to yield

several harmonic overtones for a wide range of physical and geometric parameters. Such a mem-

brane is present at each end of the barrel of an idakk�a, an Indian snare drum well known for its rich

musicality. The audio recordings of the musical drum are analyzed and a case is made for the strong

sense of pitch associated with the drum. A computationally inexpensive model of the string-

membrane interaction is proposed assuming the strings to be without inertia. The interaction essen-

tially entails wrapping/unwrapping of the string around a curve on the deforming membrane unlike

the colliding strings in Western snare drums. The range of parameters for which harmonicity is

achieved is examined and is found to be conforming with what is used in actual drum playing and

construction. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5038111

[TS] Pages: 3184–3194

I. INTRODUCTION

A few ingenious drum designs have made it possible to

obtain a definite pitch, with several harmonic overtones, out

of an otherwise inharmonic vibrating circular membrane.

These include timpani, where the kettle is suitably con-

structed to produce up to four harmonic overtones,1 and

Indian drums, such as tabl�a, pakh�awaj, and mradangam,

where the composite nature of the membrane yields at least

ten harmonic modal frequencies.2–5 Apart from these excep-

tions, drums are known to possess an indefinite pitch and

hence are useful only for generating rhythmic sounds.6 In

this paper, as another exception, we report the acoustics of

idakk�a, an Indian bi-facial snare drum with a waisted barrel.

Idakk�a is at present played as a temple instrument in the

south Indian state of Kerala and is found frequently in

ancient Indian sculptures and musicology texts.7,8 It is often

used to play intricate r�aga based melodies and can swiftly

move its fundamental in a range of about two octaves. The

instrument is worn on the left shoulder and played by strik-

ing one of the anterior drumheads with a stick held in the

right hand; see Fig. 1. The left hand, while holding the bar-

rel, pushes the waist of the barrel in order to effect the rich

tonal variations in idakk�a’s sound.9 The purpose of this

article is to establish the rich harmonic nature of idakk�a first

by analyzing the audio recordings and then by proposing a

novel numerical model for the string-membrane dynamic

interaction.

The two idakk�a drumheads are made from a thin hide,

of density l � 0.1 kg-m�2, obtained from the interior stom-

ach wall of a cow. The thinness of the hide allows for large

tension variations in the membrane. The hide is pasted onto

a jackfruit wood ring, 2.5 cm thick with an internal diameter

of around 20 cm. The two drumheads are connected by a cot-

ton rope which threads through six equidistant holes in the

rings and forms a V-shaped pattern between the heads. The

shoulder strap has four extensions, each tied to three of the

rope segments between the drumheads; see Fig. 1. This

arrangement connects all the rope segments symmetrically

to the shoulder strap, so that pushing the latter would uni-

formly change the tension in the drumheads. Four wooden

pegs, each about 18 cm long, are inserted between the seg-

ments and 16 spherical tassels are attached to each of these

pegs (additional illustrations of idakk�a are provided in the

supplementary material9). Whereas the pegs keep the rope

segments taut and in proper position, the purpose of hanging

the tassels seem to be only of cultural significance.8

The barrel is usually made of jackfruit wood, which has

a dense fibrous structure with low pore density and hence

high elastic modulus. The barrel is around 20 cm in length,

with two faces of diameter around 12 cm, and a waist of a

slightly lower diameter as shown in Fig. 2 (bottom). The

face diameter, being almost half of the drumhead size,

ensures that a uniform state of tension indeed prevails within

the vibrating membrane even when the drumhead tension is

controlled only at six isolated points. The walls of the barrel

are about 1 cm thick. The rim has a distinctive convex shape,

as seen in Fig. 2 (top left), allowing for the membrane to

wrap/unwrap over a finite obstacle during its vibration. This

is analogous to vibration of a string over a finite bridge in

Indian string instruments leading to a rich spectrum of over-

tones.10,11 Two palmyrah fibre strings, of linear density k
� 10�4 kg-m�1, are stretched and fixed across each face of

the barrel, at about 6 mm from the center, and tied to copper

nails on the side; see Fig. 2. Channels are cut into the rim of

the barrel to ensure that the fibres sit flush with the rim and

therefore with the drumhead. The fibres are soaked in water

before they are installed. The tension in the fibres is esti-

mated to be around 6.5 N; the details of this estimation are

given in Sec. II A of the supplementary material.9 The drum-

heads are held tight against the barrel with the cotton rope and

are easily disassembled when not in use. Also, whereas the

drumheads can be tuned using the cotton rope, as described in

the previous paragraph, the fibres are never tuned. The fibresa)Electronic mail: ag@iitk.ac.in
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are stretched until they are close to the breaking point and

then tied onto the rim of the barrel. More details about the

structure of idakk�a can be found elsewhere.8,12

The acoustics of idakk�a are governed by several factors,

prominent among which are: (i) the string-membrane inter-

action, (ii) the curved rim of the barrel, (iii) varying mem-

brane tension using the tensioning chords, (iv) the coupling

between the two drumheads, and (v) the air loading. The

string–membrane interaction in idakk�a is tantamount to

wrapping-unwrapping of the string around a curve of the

vibrating membrane. Such a contact behavior, rather than an

impact, is expected due to the higher tension and lower mass

density of the palmyrah strings as compared to the metallic

strings (used in Western snare drums). The material used for

the membrane and the strings, the curved rim, and the intri-

cate method of tensioning the chords are all unique to

idakk�a. Out of the five factors mentioned above, our empha-

sis will be to model the string-membrane interaction using a

computationally inexpensive model, while assuming the

strings to be without mass, without damping, and forming a

convex hull below a curve on the vibrating membrane. The

influence of the curved rim on the overall acoustics of the

drum is discussed briefly in the supplementary material.9 We

will ignore the effects of drumhead coupling and air loading

in the present work.

The motivation for our study is provided in Sec. II by

analysing audio recordings of the idakk�a’s sound. A case is

made for the rich harmonic sound of the drum. A mathemati-

cal model for the string-membrane interaction is proposed in

Sec. III. The results of the model are discussed in detail in

Sec. IV. These include finding the optimum geometric and

material parameters for achieving harmonic overtones,

recovering the obtained frequencies from a nonlinear normal

mode analysis, and comparing our model with an existing

collision model. The paper is concluded in Sec. V.

II. MOTIVATION FOR OUR STUDY

The audio recordings were done on a TASCAM DR-

100MKII Linear PCM recorder at a sample rate of 48 kHz

with a bit depth of 16. While splicing the audio file into

individual samples, the sample rate was changed to

44.1 kHz. The change in the sample rate was a result of sav-

ing the spliced files in the default sampling rate of

Audacity.13 We do not anticipate any difference in the

results since the frequencies of our interest are on the order

of 1 kHz, much smaller than any of these two frequencies.

Although the original recordings were done in stereo, we

have used only one channel for our analyses. The spectro-

grams and the power spectral densities (PSD) are plotted

using the spectrogram and pwelch commands, respec-

tively, in MATLAB.14

The expert musician (Mr. P. Nanda Kumar) played the

seven notes of the musical scale in Indian classical music

forward and backward with four strokes of each note. The

first stroke, in almost every case, has a swing in frequency in

the initial part of the stroke, see Fig. 3 (left), as if the musi-

cian is correcting himself to reach the correct pitch as he

plays (and hears) the note for the first time. A swing in fre-

quency is also observed towards the end of the last stroke,

see Fig. 3 (right), possibly in anticipation of the note to be

played next. These swings, in addition to being a corrector

or anticipator, are also a reflection of the gamak�as related to

the r�aga being played. It is therefore best to consider either

the second or the third stroke of each note for further analy-

sis. We choose the latter. We also note that the spectrograms

contain inharmonic content for a small initial time duration;

a typical spectrogram is shown in Fig. 4 (left). The inharmo-

nicity is due to the influence from striking of the drum. The

harmonic content, however, dominates the spectrogram as

well as the auditory experience and sustains itself. We con-

sider only the latter portion of the spectrograms for obtaining

the PSD plots. The spectrograms for the case without strings

FIG. 2. (Color online) Distinctive curved shape of the rim of the barrel (top

left). A pair of strings installed on an idakk�a barrel (top right). Barrel of an

idakk�a (bottom). A piece of cloth may be used (as shown) to improve the

grip. The nails to which snares are tied are also visible close to the edge of

the barrel.

FIG. 1. (Color online) An idakk�a being played.
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show inharmonic content throughout as well as faster decay

rates for the higher modes, see for instance Fig. 4 (right).

In Fig. 5, we have three PSD plots each corresponding

to the case of idakk�a with (top row) and without (bottom

row) strings. The fundamental frequency f0 in each of these

plots is different, representing different values of tension in

the drumhead. There are three differences between the two

cases. First, the power/frequency peaks for overtones are

about 20 dB higher in the case with strings compared to the

case without strings. Second, the dominant overtones in the

PSD plots with strings are always harmonic,15 whereas there

is a significant inharmonic content in the other case. To

show this more clearly, we have marked the inharmonic

peaks with orange markers in the PSD plots for the case

without strings. Some of these inharmonic peaks are present

with insignificant amplitudes even in the top row, where the

relative importance of harmonic peaks is evident. It should

also be noted that, in the top row plots, the third overtone

peak is always accompanied by a secondary peak, of much

lower intensity, for instance those marked by a blue line at

around 3.25f0. This is indicative of a beat-like phenomenon.

Also, the second harmonic is missing in these plots. This

absence is not perceived when listening to an idakk�a for well

understood psychoacoustical reasons.16 Third, a harmonic

distribution of overtones for the case with strings (top row in

Fig. 5) is observed over a large range of membrane tensions.

This is noteworthy for a nonlinear problem such as the one

present before us. These differences are sufficient to argue in

favour of the distinctive role of strings in bringing about a

harmonic character to idakk�a’s sound. The plots without the

strings indicate the combined role of the curved rim of the

barrel, the air loading, and the drumhead coupling.

We can also calculate the fundamental frequency of the

string, seen as an isolated vibrating structure. The tension

and the linear density of the string are estimated as 6.5 N and

10�4 kg-m�1, respectively. The length of the string is 11 cm.

The fundamental frequency can then be calculated as

1159 Hz. Since this value is larger than the frequencies for

the fundamental in the PSD plots, in the top row of Fig. 5,

we can reasonably argue that the frequencies obtained are a

result of the membrane-string interaction and not due to

string vibration alone.

FIG. 3. (Color online) Swings in frequency as seen in the audio recordings as correction (left) and anticipation (right).

FIG. 4. (Color online) Typical spectrograms with (left) and without (right) the strings.
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III. MODEL

As is evident from our analysis of the audio recordings

of idakk�a, the strings play a central role in bringing about

harmonicity in idakk�a’s frequency spectrum. As a first step

towards building a mathematical model for idakk�a, we begin

by considering the transverse vibration of a uniformly tensed

homogeneous circular membrane, with clamped edges,

backed by two taut strings. The strings, whose ends are fixed

to the circumference of the membrane, are under constant

tension and run parallel to each other equidistant from the

center of the membrane. At rest, the two strings sit below the

plane of the membrane, with negligible distance between the

membrane and the strings. This minimalist model is illus-

trated in Fig. 6(a).

Our model assumes the strings to deform by forming a

convex hull around a curve on the deforming membrane,

thereby providing a contact force to the vibrating membrane

at dynamically varying contact regions; see Figs. 6(b) and

6(c). We neglect the mass of the strings as well as any damp-

ing associated with them. The force of string-membrane

interaction is therefore determined by statics alone.

Furthermore, the strings are assumed to vibrate in a vertical

plane orthogonal to the undeformed membrane. The plane of

vibration for one of the strings is shown in Fig. 6(b). The

deformed position of the strings is derived directly from the

shape of the membrane without solving the partial differen-

tial equation for the string motion. The deformed string

acquires a shape of the convex hull of the curve obtained by

intersection of the membrane with the plane. Such a defor-

mation would entail contact of the strings with the mem-

brane at dynamically varying regions. The strings, in this

way, are understood to wrap around the curves which are the

intersection of the deforming membrane with the vertical

planes. We compare our model with a penalty-based contact

model in Sec. III B. The latter, which solves a coupled sys-

tem of membrane and string equations of motion, uses a

one-sided power law to model the collision while penalising

the physically unfeasible inter-penetration. A collision

model is necessary for Western snare drums where the iner-

tia of metallic snares cannot be ignored.17–20

A. The quasi-static string approximation

The equation of motion of a clamped membrane, of

radius R, backed by taut strings is given by

lWtt ¼ TMDW � lr0;MWt þ F S; (1)

where W(r, h, t) is the transverse displacement of the mem-

brane [(r, h) are the polar coordinates and t is the time vari-

able], l is its area density, TM is the uniform tension per unit

length in the membrane, and r0,M is the constant damping

coefficient. The subscript t denotes partial derivative with

respect to time and D is the two-dimensional Laplacian. The

force density (per unit length) exerted by the strings on the

FIG. 5. (Color online) PSD of idakk�a drum samples with (top row) and without (bottom row) the strings in idakk�a. The dotted lines mark integer multiples of

the corresponding fundamental frequency in each plot. The blue line indicates 3.25f0. The orange arrows mark the inharmonic peaks.
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membrane is denoted by F S. The clamped boundary requires

W(R, h, t)¼ 0. We represent the solutions as Wðr; h; tÞ
¼
P1

m¼0

P1
n¼1 gmnðtÞ/mnðr; hÞ, where gmn(t) are the

unknown time-dependent parts of the solution and /mn(r, h)

are the orthonormal mode shapes for a uniform circular

membrane of radius R clamped at the edges, i.e., /mn(R,

h)¼ 0 8 m, n. Using this expansion, we can convert the par-

tial differential equation [Eq. (1)] into a coupled system of

ordinary differential equations

l€gmnðtÞ ¼ �c2
mnTMgmnðtÞ � lr0;M _gmnðtÞ

þ 1

pR2

ð
A

/mnF SdA; (2)

where cmn¼Bmn/R with Bmn being the nth root of the mth

order Bessel function of the first kind. The superposed dot

denotes the time derivative with respect to t. The integral is

taken over the whole membrane such that dA is the infinitesi-

mal area element.

The membrane experiences a dynamic contact force

density F S due to its interaction with the two taut strings.

We propose that

F s ¼ �
X2

i¼1

f idi
L; with f i ¼ �TShi

nini ; (3)

where hi(ni, t) is the transverse displacement of the string; di
L

is the line delta function for the ith string; ni is the intrinsic

spatial coordinate on the string; TS is the uniform tension

equal in both the strings; and the subscript ni denotes the par-

tial derivative of the function with respect to the spatial vari-

able. We assume that the strings wrap around the membrane

in a sense described above and illustrated in Fig. 6(b). If

every point of the membrane remains above the horizontal

plane, the strings stays horizontal. Such a consideration lets

us ignore the string dynamics making our method computa-

tionally less intensive than solving the full coupled problem

including the equations of motion for the strings.

We can non-dimensionalize the governing equation [Eq.

(2)] and incorporate the force [Eq. (3)] by introducing

dimensionless parameters ~g ¼ g=g0; ~t ¼ t=t0; ~h ¼ h=g0, and

~n
i ¼ ni=R, where t0 ¼ R=

ffiffiffiffiffiffiffiffiffiffiffi
TM=l

p
and g0 is any non-zero

positive real number with the dimensions of g; we take the

magnitude of g0 to be one. We obtain

FIG. 6. (Color online) (a) A schematic of the string-membrane configuration. The circular membrane is clamped at the edge and the two strings sit below the

membrane. Here, 2b is the distance between the strings, R is the radius of the membrane, and W(r, h, t) is the transverse displacement of the membrane. (b) An

illustration of the strings forming a convex hull around the curve of intersection between the membrane and the plane. A combination of the first two axisym-

metrical modes of a uniform circular membrane were used to generate the deformed profile. (c) A sectional view of the string-membrane contact. The plane of

section is shown in (b). The grey line indicates the intersection of the membrane with the vertical plane and the red line is the string below the membrane.
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€~gmn ¼ �B2
mn~gmn � r0;Mt0

_~gmn

þ v
X2

i¼1

ð ffiffiffiffiffiffiffiffiffiffiffi
1�ðwÞ2
p

�
ffiffiffiffiffiffiffiffiffiffiffi
1�ðwÞ2
p ~h

i
~n

i~n
i/mnð~n

iÞd~n
i

0
@

1
A; (4)

where

v ¼ TS

pRTM
and w ¼ b

R
: (5)

In writing the last pair of terms in Eq. (4), we have consid-

ered the geometry in accordance with Fig. 6(a). In particular,

R is the radius of the membrane and 2 b is the distance

between strings. Also, the superposed dot is now indicative

of the derivative with respect to variable ~t. The non-

dimensionalized governing equation has three dimensionless

parameters: w is purely geometric in nature, v is essentially

the ratio of string to membrane tensions, and r0,Mt0 is the

dimensionless damping coefficient term. The tension TM is

the only parameter which can be varied while playing an

idakk�a. The others are fixed once for all. The integral terms

in Eq. (4) are the source of nonlinearity in the equation and

also of coupling between the modes.

B. Comparison of the quasi-static string
approximation with a penalty-based method

In a penalty-based method, we take the contact force as

a one-sided power law

F s¼�
X2

i¼1

f idi
L; with f i¼�K hi�Wðt;rðniÞ;hðniÞÞ

� �a
;

(6)

where K and a are constants, and ½x� ¼ ð1=2Þðxþ jxjÞ.20 In

addition, the equations for string dynamics are also consid-

ered in the form

khi
tt ¼ TShi

nini � kr0;Shi
t þ kr1;Sðhi

niniÞt þ f i; (7)

where k is the linear mass density of the string, and r0,S, r1,S

are constant damping coefficients. The bending term is

ignored due to low bending stiffness of the palmyrah fibres.

For palmyrah fibres in maximal tension, the tension and

the power law terms dominate over rest of the terms. This

can be seen by writing Eq. (7) in a non-dimensionalized

form and considering material values for the palmyrah fibres.

The string equation can then be considered in a simplified

form

0 ¼ TShi
nini � K hi �Wðt; rðniÞ; hðniÞÞ

� �a
; (8)

for each string. It is solved numerically using the non-linear

solver fsolve in MATLAB.14 We consider only two modes

such that g01¼�0.1 mm and g02¼ 0.1 mm. We fix a¼ 1.3.21

The results are shown in Fig. 7. A large value of K is needed

to minimize inter-penetration of string and the membrane. We

also compare the results with what is used in the quasi-static

string approximation. A typical membrane shape (R¼ 55 mm

and b¼ 6 mm) is used and the MATLAB function convhull is

used to obtain the convex hull. We note that for a lower value

of K, in Fig. 7(a), there is slight inter-penetration and there is

a considerable difference between the contact force as calcu-

lated from the penalty method and the quasi-static string

approximation. For a higher K value, the inter-penetration

reduces significantly and the two contact forces come in better

agreement. In a penalty-based method the inter-penetration

would never vanish all together unlike the present method

where it is zero by construction. Therefore, on one hand, we

can view the quasi-static string approximation as a simplifica-

tion of the penalty based method achieved by ignoring string

inertia and damping along with an appropriately high value of

K, but on the other hand we note that the former is exact in

enforcing avoidance of the inter-penetration of strings into the

membrane.

FIG. 7. Comparison of displacements and forces as obtained from Eq. (8) (dotted line) and the quasi-static string approximation (black line) for two different

values of K in (a) and (b). A typical membrane shape is shown as a grey line.
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IV. RESULTS AND DISCUSSION

We solve Eq. (4) numerically, using ode113 solver in

MATLAB,14 by considering only the first 12 modes (including

odd and even degenerate modes), such that m¼ 0, 1, 2, 3, 4,

and n¼ 1, 2. These equations are coupled to each other as

well as they are nonlinear in the unknown variables ~gmn,

both due to the integral term present therein. Indeed, the

string displacement ~h in the integrand is obtained from

restricting the convex hull of the membrane (which is in

terms of the unknown ~gmn) to the one-dimensional domains

of the two strings. In doing so, the strings are assumed to

move only transversely. The convex hull is calculated using

the convhull function in MATLAB. The evaluation of string

displacements is done concurrently while solving the equa-

tion in the sense that the string shape at time t is a function

of membrane shape at time t. The integral term in Eq. (4) is

approximated using the trapezoidal rule with 201 integration

points. For all our simulations, we use an initial condition of

a small displacement (away from the strings) of the mem-

brane along the shape of the fundamental mode of uniform

membrane vibration. Interestingly, in all our simulations,

only four modes, (0, 1)e, (2, 1)e, (0, 2)e, and (4, 1)e (the sub-

script e denotes the even mode) remain dominant while the

others are excited only weakly. Accordingly, we report the

results for only these four modes. Most importantly, for cer-

tain parametric values, both significant energy transfer to

higher modes and rich harmonicity in the frequency spec-

trum are observed. This is illustrated in Fig. 8 where the

waveform and the PSD plot of the solution for a typical set

of parameters are produced. As noted above, it is the interac-

tion of the membrane with the strings which is the source of

both non-linearity and coupling between the normal modes.

Without the string-membrane interaction terms, as expected,

only the (0, 1)e mode is excited, and the PSD plot shows one

isolated peak for the fundamental.

In the following, we begin by looking at the range of

membrane tension values, keeping other parameters fixed,

for which harmonicity is achieved. This is followed by a

similar attempt for the distance between strings. This lets us

justify the harmonicity of idakk�a over a wide range of ten-

sion values on one hand and the optimal design of string

placement on the other. Next, we attempt to understand the

distinctiveness of idakk�a’s drumhead design as compared to

that of the Western snare drum, knowing well that the latter

is bereft of harmonic rich sound.22 In Sec. IV C, we recover

the obtained frequencies by a nonlinear normal mode

analysis.

A. Effect of varying v and w

The solutions are obtained by varying TM over a factor

of 3 such that v is varied in a range of 0.06 to 0.4; see Fig. 9.

This represents a change in the fundamental frequency by

about 1.7 times. The plots for v between 0.07 and 0.21 are

striking for the appearance of distinct harmonic peaks. The

peaks are sharpest for v around 0.16. The harmonic peaks

are also accompanied by smaller peaks of much lower inten-

sity, suggesting a beat-like phenomenon. This was also noted

in the spectra obtained from the audio recordings. Outside

this range of v, several inharmonic peaks start to appear, so

much so that around v¼ 0.4 there is no definite harmonic

character in the overtones. The range of desirable v values

may be slightly affected if the effects due to curved rim, air

loading, and bi-facial membrane coupling are also incorpo-

rated. While obtaining the solution for various values of v, it

must be ensured that the basic assumption of massless

strings in the quasi-static string approximation remains justi-

fied. In other words, it must be ensured that the inertia term

in the string equation remains small, i.e., 1� ðTSt2
0Þ=ðR2TMÞ

¼ ðlTSÞ=ðkTMÞ ¼ ðlpRvÞ=ðkÞ. The broad range of v which

ensures a near harmonic response is a testament to idakk�a’s

playing over a wide range of membrane tension values. It

also ensures that the harmonic response is not too sensitive

to the precise tension values in the two strings.

The spectra are also obtained for different values of the

geometric parameter w(¼ b/R); see Fig. 10. Other parame-

ters are kept fixed, including v¼ 0.15. A variation in w rep-

resents a variation in both the distance b between the snares

and the radius R of the membrane. Sharp harmonic peaks are

observed for a wide range of w varying between 0 and 0.4.

The peaks are the sharpest, with highest intensity, for w
around 0.1, which is also close to the value usually used in

idakk�a construction. The secondary peaks are present

FIG. 8. (Color online) (a) Waveform

and (b) PSD plot corresponding to

TM¼ 250 N and TS¼ 6.5 N (such that

v¼ 0.15); w¼ 0.1091. The dotted lines

in (b) mark integer multiples of the

fundamental frequency.
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although with a relatively lower intensity. The robustness of

the system in maintaining a near harmonic response over a

large range of geometric configurations is in confirmation

with the existence of other drum designs, for instance the

much smaller udukku, which has only one snare passing

through the center (i.e., w¼ 0).8

B. Comparing idakk�a with the snare drum

Unlike idakk�a, the Western snare drum is not known to

produce harmonic overtones.17,22 It is then important to

understand the differentiating characteristics of the snare

action in the former drum. The difference essentially comes

from the material of the snare and the tension values in the

two drums. Idakk�a has natural fibres as snare strings which

have a lighter weight when compared to the metallic strings

used in snare drums. On the other hand, the tension in

idakk�a’s snares are more than three times that in the snare

drum. Additionally, the tension in idakk�a’s membrane is an

order of magnitude lower than in the drumhead of the snare

drum. All of this allows us to ignore the string inertia term in

the case of idakk�a. We use the penalty method to compare

the waveform for the two cases. The simulation for the snare

drum is performed with geometric and material parameters

as given by Torin and Newton.17 The penalty method-based

solutions for idakk�a drumhead give results close to those

obtained using the quasi-static string approximation, with

fundamental frequencies obtained within 2% of each other,

as can be observed by comparing Fig. 11 with Fig. 8(b). For

want of data, the coefficients to the damping terms for pal-

myrah fibres are taken equal to that of steel. The material

and geometric parameters used are TM¼ 250 N-m�1,

TS¼ 6.5 N, r0,M¼ 20 s�1, r0,S¼ 2 s�1, r1,S¼ 0.001 m2 s�1,

l¼ 0.095 Kg-m�2, k¼ 1.07� 10�4 Kg-m�1, R¼ 55 mm,

b¼ 6 mm, K¼ 1010, and a¼ 1.3. Some of these parameters

have been taken from Torin and Newton.17 The inclusion of

string damping is a possible explanation for the non-

appearance of higher harmonics in Fig. 11.

The waveforms for the two drum heads are shown in

Fig. 12. The waveform in Fig. 12(a) looks different from that

in Fig. 8(a) due to incorporation of damping in the former.

The waveform of the snare drum shows abrupt changes in

the amplitude of the mode shapes. This is caused by the col-

lisions happening at a frequency much lower than the fre-

quency of vibration of the membrane modes, which, in turn,

is due to the high mass density and low tension of the metal-

lic snares. On the other hand, no such changes are seen for

the idakk�a drumhead where the string collisions happen at a

frequency higher than that of the membrane vibration. This

difference also validates our choice of using the quasi-static

method rather than a collision-based method. A second thing

to note in these waveforms is the amount of energy transfer

that is occurring from the fundamental to the higher modes.

It is clear that, in the case of idakk�a, several higher modes

are predominately excited whereas, for the snare drum, the

fundamental dominates over all other modes for all times.

FIG. 9. (Color online) The presence of harmonic overtones for a range of 0.07< v< 0.21, w¼ 0.1091. The dotted lines mark integer multiples of the funda-

mental frequency.
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C. Non-linear normal modes

A non-linear normal mode (NNM) of an undamped con-

tinuous system is defined as a synchronous periodic oscilla-

tion where all the material points of the system reach their

extreme values or pass through zero simultaneously, thereby

appearing as a closed curve in the configuration space.23 The

purpose of this section is to determine NNMs for a system

governed by an undamped form of Eq. (4). We expect the

frequencies corresponding to NNMs to be close to those

obtained using the full dynamical solution. This will provide

an independent validation of the nature of frequency spectra

as observed in our simulations. In order to determine NNM,

we fix the initial velocity to be zero and look for a time

period of the solution such that it crosses the zero velocity

condition again in the configurational space. More details

are provided in Sec. III of the supplementary material.9 Fixing

parameter values such that v¼ 0.15 and w¼ 0.1091, we deter-

mine four such periodic solutions. The frequencies associated

with these solutions are 384.76 Hz (say f), 784.85 Hz

(¼2.04f), 861.19 Hz (¼2.24f), and 1157.35 Hz (¼3.008f). The

second and the fourth values clearly correspond to the second

and the third harmonic, respectively. The third frequency

value is close to the neighboring peak to the second harmonic

as observed in most of the frequency spectra. The solution

corresponding to these four frequencies is shown in Fig. 13.

The mode (0, 1)e is seen to have a mean value greater than

zero in all four NNMs. It is possible to find other NNMs by

choosing different initial conditions. The four frequencies are

also shown superposed on a PSD plot obtained using the

quasi-static string approximation in Fig. 14.

The frequencies of the NNMs bear emphasis. For wide

values of v, we have already seen that the response of the

struck drum is dominated by an almost periodic, but not

sinusoidal, response, leading to strong harmonic content. In

such cases, however, different NNMs have different

FIG. 10. (Color online) Harmonic response observed for over a range value of 0<w< 0.4, v¼ 0.15. The dotted lines mark integer multiples of the fundamen-

tal frequency.

FIG. 11. (Color online) PSD plot obtained for an idakk�a drumhead using the

penalty method. The dotted lines mark integer multiples of the fundamental

frequency.
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frequencies which do not bear simple relationships with each

other. For the special value of v¼ 0.15, however, we find

that three different NNMs end up with frequencies close to

the proportions of 1:2:3, which leads to a particularly strong

and rich harmonic response.

The issue can be clarified further as follows. Many con-

servative nonlinearities might yield several different periodic

solutions. Each such periodic solution, if excited in isolation,

would be non-sinusoidal and possess harmonics. However,

typical nonlinearities make the frequency dependent on

amplitude. For the idakk�a, the nonlinearity leads to periodic

solutions whose frequency does not depend on amplitude.

Confining attention to such nonlinearities, which produce

periodic solutions whose frequency does not depend on

amplitude, in general it may not be possible to easily pro-

duce the initial conditions for such periodic solutions. For

the case of idakk�a, however, our model demonstrates that a

typical strike on the drum does produce such initial

FIG. 12. (Color online) Waveforms

obtained from a penalty method-based

simulation of (a) an idakk�a drumhead

and (b) the snare drum drumhead. The

physical parameters for the latter is

taken from Torin and Newton (Ref. 17).

FIG. 13. (Color online) NNM solutions

corresponding to the zero velocity ini-

tial condition. The variable g on the y-

axis denotes a scaled displacement

amplitude.
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conditions. Finally, even beyond the easy production of such

initial conditions, there remains the issue of the existence of

several possible NNMs with time periods that do not occur

in pleasing proportions. In such cases we expect, as numerics

also show for typical v, that one NNM dominates. The final

intriguing, or pleasing, aspect of idakk�a seems to be that

there is a special value of v for which three distinct NNMs

have frequencies in harmonic proportions. Mathematically,

there is in general no reason to expect that multiple NNMs

with rationally related frequencies can dynamically coexist

in a given solution. However, as our simulations show, this

may be occurring to some degree because for the same value

of v, the time response shows a particularly strong and clean

harmonic response; see Fig. 14.

V. CONCLUSION

We have investigated idakk�a as a musical drum capable

of producing a rich spectrum of harmonic overtones. The

uniqueness of idakk�a is attributed to the nature of the snare

action due to the peculiar material of the snares. The other

important aspects of idakk�a include the curved nature of the

barrel rim and the cord tensioning mechanism. The sound of

the idakk�a is distinctively different from that of Western

snare drums, which are otherwise inharmonic,22 and that of

African talking drums and Japanese tsuzumi, both of which

have elaborate cord tensioning mechanisms but do not pro-

duce a definite pitch. While we have initiated a systematic

study into the acoustics of the instrument, several important

considerations have been left out for future investigations.

These would include modeling the snare action combined

with the curved rim, coupled drumheads, and air loading.

The interesting mathematical problem of membrane vibra-

tion against a unilateral boundary constraint, in the form of a

curved rim, also needs further attention.
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